Search

Seminars

Modern Electric Power Systems: Design, Modeling, Analysis & Problem Solving



Introduction:


Protection of low, medium and high voltage power systems requires an understanding of system faults and their detection, as well as their safe disconnection from the power system.  This course presents a description of the concepts and principles of operation and application of protection schemes for various power system elements such as feeders, transformers, motors, buses, generators, etc. 

 

The course begins with an overview of power system faults and the protection scheme requirements for the detection and coordinated clearance of these faults.  Protection requirements for cogeneration, non-utility generation, and interconnection with the utility power system are covered in detail.  This course deals with protection systems from a practical perspective, and includes important functional aspects such as testing and coordination of protection systems.  It is specially designed for industries and utilities, which depend on proper system protection for operational efficiency and minimizing damage to equipment.

Course Objectives:


By the end of this course, delegates will be able to know about:

 

  • The operation and power flow characteristics of small and large networks and how the network can be so arranged to deliver more real power over the transmission system to load centers
  • The form and use of a range of FACTS devices to improve system operation
  • New CT and VT optical transducers and protection relaying system employing microprocessor configured relays
  • Protection systems for thermal monitoring of cable networks
  • Alternative forms of generation and embedded generation. Carbon emissions trading, etc.
  • Diagnostic monitoring of plant and in particular GIS substations
  • Advances in power electronics and the application to HVDC links
  • High speed fault limiters and real time stability monitors
  • Demand side management

Who Should Attend?


Electrical Engineers, Electrical Technicians, Electrical Inspectors, Electrical Professionals & Supervisors, Instrumentation and Design Engineers, Maintenance Engineers, Supervisors & Technicians, Energy Management Consultants, Control Engineers & Technicians, Automation & Process Engineers, Chemical & Mechanical Engineers, Consulting Engineers, Field Technicians, Graduate Engineers, Project and Production Managers, Project Engineers, Electronic Technicians, Plant Managers, Process Control Engineers, System Engineers, System Integrators, Testing Engineers & Technicians, Power System Engineers, Power System Technicians, Utility Engineers, Managers & Team Leaders of Engineering Departments, Safety Professionals, Plant Electricians, Facilities Engineers, Operations & Maintenance Engineers, Supervisors & Technicians, Project Engineers, Commissioning & Testing Engineers, Consulting Engineers, Electrical Technologists, Facility & Plant Managers 

Course Outline:


Power System Faults

  • Different types of faults
  • Incidence of faults on power system equipment
  • Effects of power system faults
  • Magnitude of fault current
  • Detection of faults
  • Clearance of faults
  • Requirements of protective relaying systems

 

Components of Power System Protection Schemes

  • Fault-detecting relays
  • The transition from electro-mechanical relays to electronic and digital microprocessor-based relays
  • Tripping relays and other auxiliary relays
  • The application of programmable logic controllers
  • Circuit breakers - bulk oil, air-blast, vacuum, SF6
  • Current transformers
  • Voltage transformers
  • Modern microprocessor-based relays

 

Current Transformers (CT) and Voltage

  • Various types of CTs, VTs and CVTs
  • Theory and characteristics of CTs
  • Application requirements of CTs for protective relaying
  • Accuracy classifications
  • Future trends in CT design using optics
  • Testing of CTs and VTs

 

Feeder Overcurrent Protection

  • Protective relaying requirements for radial systems
  • Elements of feeder protection schemes
  • High-set, low-set and inverse-timed elements
  • Coordination with other devices and fuses
  • Various types of overcurrent relays
  • Electromechanical, electronic and digital relays
  • Relay setting criteria
  • Load limitations
  • Testing of overcurrent protection schemes
  • Microprocessor-based feeder overcurrent relays

 

Coordination of Electrical Protection Systems

  • Fuse to fuse
  • Circuit breaker to fuse
  • Fuse to circuit breaker
  • Computer software packages for protection coordination studies
  • Auto-reclosing of circuit breakers
  • Back-up protection
  • Limitation of fault current
  • Selective zones of protection

 

Switchboard and Bus Protection

  • Types of bus protection schemes
  • Basic concept of differential protection
  • Application to various bus configurations
  • Application to switchboards
  • Testing of bus protection schemes

 

Motor Protection, Starting and Control

  • Applicable motor standards
  • Methods of starting
  • Differential protection, phase unbalance, overcurrent
  • Ground fault protection
  • Canadian Electrical Code requirements
  • Microprocessor-based motor control and protection devices

 

Transformer Protection

  • Overcurrent and ground fault protection
  • Application of differential protection to transformers
  • Restricted ground fault protection
  • Gas relays, pressure and gas accumulation
  • Winding temperature and oil temperature devices
  • Testing of transformer protection schemes
  • Modern microprocessor-based multi-function relays

 

Generator Protection

  • Differential protection
  • Reverse power, stator ground, out-of-step, loss of field, field ground, over excitation, etc.
  • Over-frequency, under frequency, overvoltage, under voltage
  • Negative phase sequence or phase unbalance
  • Voltage controlled and voltage restricted overcurrent protection
  • Synchronizing systems, synchro-check relays
  • Comparison of electro-mechanical and electronic relays
  • Testing of generator protection schemes
  • Microprocessor-based multi-function generator protection relays

 

Cogeneration and Non-Utility Generation (NUG) Protection

  • Protection requirements for non-utility generating stations
  • Requirements for the interconnection of NUGs to utility power systems
  • Typical protection schemes for non-utility generators
  • Low-cost microprocessor-based multi-function relays for small generators
  • Breaker failure protection
  • Testing utility tie protection schemes

 

Transmission Line Protection

  • Interconnected systems with two-way flow of fault current
  • Distance or impedance protection schemes
  • Phase comparison protection schemes
  • Communication channel requirements between terminals
  • Coordination and transfer-tripping between terminals
  • Modern microprocessor-based line protection relays

 

Capacitor Protection

  • Application of static capacitors on power systems
  • Description of protection schemes used
  • Testing of capacitor protection schemes
  • Microprocessor-based capacitor protection and controls relays

 

Recent Developments and Future Trends

  • Digital relays
  • Integrated microprocessor based systems for control, monitoring, and protective relaying
  • Optical current transformers
  • Fiber optic communications

COURSE LOCATIONS

Code From To City Fee
EE36 17 Feb 2020 21 Feb 2020 Istanbul US$ 4500 Book
EE36 27 Apr 2020 01 May 2020 Barcelona US$ 5500 Book
EE36 01 Jun 2020 05 Jun 2020 New Delhi US$ 6000 Book
EE36 03 Aug 2020 07 Aug 2020 Milan US$ 5500 Book
EE36 19 Oct 2020 23 Oct 2020 London US$ 5000 Book
EE36 07 Dec 2020 11 Dec 2020 Kuala Lumpur US$ 4500 Book


DUBAI OFFICE

Ittihad Deira Building,
Al Ittihad Rd, Deira
Dubai,
UAE

info@petrogas-training.com

USA OFFICE

642 E14 Street,
10009-13 Manhattan,
New York (NY)
USA

info@petrogas-training.com

EGYPT OFFICE

52 General Kamal Hejab Street,
Suez Bridge,
Cairo,
Egypt

info@petrogas-training.com
 

COURSE CERTIFICATE

Certificate of Completion will be provided to the candidate(s) who successfully attend and complete the course. Training hours attendance percentage of 75% is required.


TRAINING HOURS

Standard course hours: 8:30 A.M. to 3:30 P.M. Informal discussions: 4:30 P.M. to 5:30 P.M.


TRAINING METHODOLOGY

We use a blend of interactive and hands-on methods, active participation, a variety of instructional techniques, dynamic presentations, individual and group exercises, in depth discussion, DVD’s, role-plays, case studies, examples. All of the information, competencies, knowledge and skills acquired within our training programs, are 100% transferrable to the participants’ workplace.


ASSESSMENT & EVALUATION

Pre-Test and Post-Test Assessment are applied on 5-day and 10-day programs. Also, post course evaluation and candidate’s evaluation are applied to add another level of quality measurement. Candidates’ feedback is highly appreciated to elevate the training service quality.


ORGANIZATIONAL IMPACT

A- Have staff trained in the latest training and development approaches

B- Support nationalization and talent management initiatives

C- Have properly trained and informed people who will be able to add value

D- Gain relevant technical knowledge, skills and competencies


PERSONAL IMPACT

A- Develop job related skills

B- Develop personal skills in subject matter

C- Have a record of your growth and learning results

D- Bring proof of your progress back to your organization

F- Become competent, effective and productive

G- Be more able to make sound decisions

H- Be more effective in day to day work by mastering job-related processes

I- Create and develop competency to perform job well


FREQUENT NOMINATIONS SCHEME

A- 10% discount after 05 candidates’ registration.

B- 15% discount after 10 candidates’ registration.    

C- 20% discount after 20 candidates’ registration.

D- 25% discount after 25 candidates’ registration.

E- 30% discount after 30 candidates’ registration

F- Higher discount rates will be offered based on work volume with different clients.  


SEVERAL NOMINATIONS ON THE SAME COURSE SCHEME

A- One extra free seat is offered on 4 candidates on the same course and dates.

B- Two extra free seats are offered on 6 candidates on the same course and dates.

C- Three extra free seats are offered on 8 candidates on the same course and dates.

D- Four extra free seats are offered on 10 candidates on the same course and dates.

E- Five extra free seats are offered on 12 candidates on the same course and dates.


REGISTRATION POLICY

Nominations to our public courses are to be processed by the client’s Training and/or HR departments. A refund will be issued back to the client in the event of course cancellation or seat unavailability. A confirmation will be issued to the relevant department official(s). 


CANCELLATION POLICY

If a confirmed registration is cancelled less than 5 working days prior to the course start date, a substitute participant may be nominated to attend the same course or a 20% cancellation charge is applied. In case of a no-show, a 100% fee will be charged.


PAYMENT POLICY

Payment is due upon receiving the course confirmation, invoice and/or proforma invoice. However; the fee due can be wire transferred to our bank account directly after course completion. Our bank details are illustrated on the confirmation, invoice and proforma invoice, as well. The above documents can be communicated electronically, i.e., in a soft copy or/and in hard copy based on customer’s request.


COPYRIGHT

© 2017. Material published by PETROGAS shown here is copyrighted. © 2017. All rights reserved. Any unauthorized copying, distribution, use, dissemination, downloading, storing in any medium, transmission, reproduction or reliance in whole or any part of this course outline is prohibited and will constitute an infringement of copyright.